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Absfract. In this paper we explicitly construct the Markov trace for the general coloured
exotic braid group representations (BGR) with spin-f. It is verified that the pGR for j=1is
redundant in the sense of Murakami, but no Birman-Wenzl algebra.

1. Imfroduction

Some of the trigonometric solutions of the Yang-Baxter equation (¥BE) can be derived
through the Yang-Baxterization prescription [1, 2] for given braid group represen-
tations, which are related to the guantum algebra through either the quantum double
of Drinfeld [3] or matrix Hopf algebra [4]. The Yang-Baxterization approach [4, 5] is
based on the number of distinct eigenvalues of a considered BGR denoted by S. The
“physical solutions of yBe should satisfy the boundary condition

R{x=0)=constant X § (1.1)
initial condition

R(x=1)=constant x (1.2
and the unitarity condition

R()R(x"")=p(x)1 (1.3)

where p(x) is a scalar function of spectral parameter x, and 7 is the unity matrix. In
[4, 5] we found that such a Yang-Baxterization prescription is related with the untang-
ling properties of 2 BGR. An interesting example is the Birman-Wenzl algebra (Bwa).
In [5, 6] we pointed out that if a BGR obeys Bwa then the Yang-Baxterization prescrip-
tion works sufficiently [1, 5, 6]. It is equivalent to the Baxterization of Jones [!] for the
standard case. It is also verified that our non-standard solutions associated with B(n),
C(r) and D(n) all belong to Bwa [6].

On the other hand, one meets the Alexander link polynomials [8, 13] for some non-
standard solutions of BGR. In this case invariant fangles appear instead of the usnal
links.

Following Murakami [12] if an enchanced Yang-Baxter operator (vBe) ¥ is redund-
ant then invariant tangles associated with the corresponding BGR exist.
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We have proved that any BGR belonging to Bwa must be redundant [6]. Further-
more, in [6, 7] it has been shown that our non-standard solutions of BGRr associated
- with B(n), C(n) and D{n) obey BwA, and some BGR associated with C(xn) and D(n)
lost the definition of loop in Kauffman state model. Therefore they are redundant in
the sense of Murakami [12] and there exist invariant tangles {6]. A question is then
naturally raised: whether there is a BGR with three distinct eigenvalues, which is not
Bwa but still redundant.

The answer is yes. In this paper we shall explore the following points.

{1) The exotic solution for spin 1 presented in [13] is definitely not BwA.

{2) A general Markov trace theory is set up for our non-standard solutions with
spin j derived by the representations of quantum algebra with ¢ a root of unity [14, 16].
The solutions given in [12, 13] are special cases of our solutions.

(3) By direct calculation we prove that the exotic BGR for spin 1 is redundant so
that the associated invariant tangles are rigorously defined.

2. Yang-Baxterization and properties of BGr with three distinct eigenvalues

We first review the general scheme of Yang-Baxterization for a BGr denoted by S with
three distinct eigenvalues

(§=2A)(S—A2)(S—75)=0. (2.1)
It is proved in [2, 5] that if S' satisfies

S=AT6T 705 40,4170+ 87 =0 (2.2)
where

B =SE'STST! — S5 1SF S5
8,=8,82" — 557" +857'5,—53'S, (2.3)
8 =5f"— 85!

and 3, /2, fT are given by

24

then R(x) satisfies YBE
Ri(x)Ro(xp) Ri( y) = Ry ) Ri () Ro((%) (2.5)
if R(x) is constructed by

R(x)= A(x)S+ B(x)I+ C(x)S™! (2.6)
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with
AX) =43 (x—1) C(x)=Ax(x—1)

2.7
B(x)=(l+£l+ﬁ+£2)x. @7
o ds s

As has been shown in [5], if S obeys the Bwa then § satisfies
fh, A2, A3)=0 : ) 2.8)
and
e, A =0, : (2.9)
Omne can not derive that 5 obeys Bwa even if § satisfies both (2.8) and (2.9)
Without loss of generality the eigenvalues of S are taken as A, =4, ;,=1"" and A;=
7" and m=A+ 7y~ then we have:
Proposition 1. If § satisfes (2.8) then (2.9) is equivalent to
E\S:E,—E.S$\E,=Il(E,— E;) (2.10)
where

Si+S87 ' =m(I+E)(i=1,2). | _ (2.11)

Proof. By the definition of E;, equation(2.1) can be recast into

El={m ™ (I+I™")~-1}E, . 2.12)
or

St=m(S;+{'E)—1. (2.13)
Substituting (2.11)}-(2.13) into (2.2) we obtain
S, A, D)=1(2, 274, 1)

PR (E ~ Ey)— NI By SaEs — ExSi Ep) -+ APm(S) ExSi — S2ErS)

+ AP (B Sa+ SoEy — ExSy — S1Es). (2.14)
Using (2.14), a direct check gives |
AT D= A A, D=(A— A Y E S By — ExS 1 Ea— L (Ey— En)}. (2.15)

Thus /{41, Az, 43) =0 then f(A2, A1, A;) vanishes if and only if (2.10) holds.

Since (2.10) cannot determine E,S.E,=/[E, which is the point for the existence of
Bwa, we conclude that both (2.8) and (2.9) are not enough to determine swa, However
if (2.8) holds but (2.10) does not, this immediately determines that § must not be BwA.

Proposition 2. The following BGR is not BWA.:

S=block diag (41, Az, 43, Aa, As) (2.16)
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where
A;=1 As=ef
A2=—0 t ] A4=[ 0 o’ }
Lt 1-7 0’ P(l-wf)
[0 o £
A3=|0 of iwtZ
_z’ iotZ (1-5)1- o)

with @*=1 and Z=((1 - A1 - .
The distinct eigenvalues are

A=, Jp=—1, A=t 2.17)

To prove proposition 2 we substitute (2.16} and (2.17) into f{4,, 4,, 4,). The calcula-
tion shows that f(4;, 4, ;) #0. For instance the efement

{f(R2, A, Aoz = (@ + &+ 1)1™° (2.18)

vanishes only when (=1

Thus by proposition 1 the § given by (2.16) does not obey Bwa, Therefore, § can
be Yang-Baxterized by (2.6) though S does not obey swa This example is interesting
because the BGR given by (2.16) is not Bwa, but the Yang-Baxterization prescription
still works. This solution differs from the super-extended BGr associated with B{n),
C(n) and (D(n) that obey BwA. As was shown in [14] the super-case corresponds to
genetic g-representation of quantum algebra, whereas (2.16) comes from quantum alge-
bra at g, a root of unity, and its U{1) extension is permitted by the quantum double.

3. Markov properties of exotic BGr for spin model

In general it is difficult to perform the parameter extension in preserving the quantum
double since the explicit representation should be used. However, for SL,(2) one can
use the g-deformed Holstein-Primakoff transformation to make such an extension.
Obviously the extension means more parameters appearing in the associated BGr, hence
we shall obtain new solutions of the BGr.

In our previous work [14, 16] the g-boson realizations of SL,(2) with more param-
eters were established. For SL,(2) g-algebra

s, J1=1] G.1)

o, Ju]=+27. (3.2)
where [n]=(¢"—¢"")/(g—q¢ "), a mapping can be defined through

JiosJo=a*a(N) (3.3)

J—J_=a"B(N) (34

Jomdo=2N—1 (3.5)
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where
a(N—1)B(N)=[A+1-A] (3.6)
=("-a"/e—a") ‘ (3.7)
and
ata"=[N] a~a*=[N+1] [N, a*]=a*. (3.8)

On the Fock space we then have

Jmy=a@min+1y  Jiny=Qa-A)nd
J_iny={n]B(n)}n—1

(3.9)

Carrying out the quantum double theory on SL,(2) at g, a root of unity, and using the
standard formula of Drmfeld we derive the following espression for the coloured
R-matrix,

(Rn(lliz(ﬂ))mm = 20 Fmi— (/2N at m ~ 1 /2))

mynz

. (1= s
* 5:,::115 Z -‘"(h—l)+"0|-Jz+mf"mi—(?/2)+(#/2))
»=o [A]!

x H ajum-F-I—I(‘l)ﬂJ;m: !+I(u)[]2+m2_l+ 1]5m|+n5:?;—n}
(ep=2j+1,qP=1) (3.10)

Obviously if it satisfies the quantum double even more parameters appear in (3.10).
The details of the derivation of (3.10) can be found in [14.16]. Here we would like
to emphasize that (3.10) is the consequence of “mixture’ between gquantum aigebra with
g, a root of unity, and continuous parameter ¢ as well as other colour parameters.
Having the general coloured solutions (3.10) we shall discuss the Markov trace
properties. For simplicity we only deal with the case f, =/,. Since only A=y plays the
role for coloured links [12], the R-matrix is simplified to

R":i:::i=g%{2(f+mﬂ—l}{ 2(j+mi) — 4}
iz

n1h ot ( q_z) —!Ll"—'l-l- n{ms= )
5,,,,5 + Z —["']"'"""'q H Qi oy ki 1('1)
n=l

Xﬁ;.m—f+:(2)Ej+mz-!+1]5:::%”6:::2-»} : (3.11)

where

a;, m— 1) () =[A—j—m+1].
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The Markov trace is sufficiently defined in terms of a diagonal matrix # such that
[17]

3 Rynbn independent of m (3.12)
N
where
By =y B, (O summation) (3.13)

The diagonal elements of (3.11) read

R — qé{ 2i+mp =AY 2(7+my) =4}
vnz

5 (1- q—z) -(n(n-l)f2)+n(mz—1n|) -
my Z] ! 11-:[1 &, o+ 1= 1{A) B, pra—141{A)
><[J+m2—l+1]51§:.+..} (3.14)

Takmg &, m—1(A} B, m{A) = [A—j—m+1] into account and multiplying a common factor
g"" the diagonal elements can be devided into two types

G R g (20H 3188 (3.15)
and
bm "= R::;ﬁi: H 2+ m+n) = {20+ ) - D)} ~ 32
(1- q—-Z)n nin+1} - 2 : _
o ¢ [1[A—j—m—I+11[j+m+n—I+1]}. (3.16)
n\: [=1

The equation (3.12) is equivalent ot he following 2f equations
Rﬁh Rﬁ-{ﬁ :h—]+RJ—1jhj— P

— pi—ni— -t
RJ—:}—nhf-n'*- Z R}—ﬁj :fr-f-:;zj—“n-i-:

i=1]

_ ¥
STho Y RTER . (3.17)

fe=l
Without loss of generality we take ;=1 then (3.17) reads
a,=aj._ lhj—i +bj—l,jhj= el =L

=£{,-..,,}2j._,,+ Z bj-n.krlfj__n.pk: s T o
k=1
=f
=a"jh—j+ Z b-j}ch-ﬂ-k. (3.18)
k=1

Since

g"=1 p=4j+2 (z=3) (3.19)
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we find )
B =g¥=q"% ' ' (3.20)

In the following we shall prove that for the highest weight j and any other weight
i, then A is given by (3.18). With the help of induction

Bi=q (3.21)

we put the continuous parameter =g * and BY?=p,_, k1., and substitute into

aj=aj_¢hj_;+kil Bymsiy—ir G.2)
to obtain
T =g $ g ey T aAe ) 69)
By virtue of

g (1+tf"z)=i=i0 {7}eg 777 (3.24)
where

(= [;]rg:]lz]- O (325)
the term

T g, ;:0 (1= 13%=7%) (3.26

can be expanded in terms of ¢°. The term with highest power is g~>'*?#*. The lowest
term is constant

T O (-1 (327
E=1
because of (3. 25) The coefficients of " (1 <m<i— 1) vanish because
Z (—1yfgt Tt (=0 ' (3.28)
ke

which can be verified by makmg the index translation

1
3 ot - bk do=Ef+mk = .
Z( g 51k}, =0 EO( 1yq* PP 0.  (3.29)

Through calculation this can be recast to

Nk (=it [l}‘ [k]‘ _
=¢ v [&T! [ — K] [k — m]! [m]! 0. (3.30)

Equation (3.30) means that the coefficients of * (1 <m<i—1) vanish.
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Substituting the above results into equation (3.22)

¢
a;=a_hj_;+ kz] Bi# (3.31)

we confirm the validity of (3.21). Summing up all the calculations we conclude that the
diagonal matrix » which is called the Markov trace [17] is (0 =g")

h=diag(l,0™ 0™, ..., 0™ "™ foroV=1. (3.32)
Obvicusly )
tr(z)=0 (3.33)

in particular for j=1 the parameter @ in (2.16) plays the role of ¢ in (3.32) we thus
have

h= @” (3.34)

For general soutions (3.11) we shall construct the Alexander link polynomials. To
confirm the existence of such invariant tangles we should prove that the considered
BGR is redundant in the sense of Murakami {12].

4. Reduncancy of equation (2.16)

The redundance of general solutions (3.11) are very complicated. In this paper we shall
focus on the redundant property of (2.16) which is a special case of (3.11). For brevity
we shall apply the theorumn of Murakami literally as the following.

(1) Direct calculation gives that

(R - (I@h)=apfl (4.1)
t (R - (IR =a"'BI 4.2)

where tr; means that the trace is taken on the second space. The R is given by (2.16)
and

a=4 p=t>2"" - (44.3)

{2} Defining
r=IQIQ ... I ®RRVI® . .. ®I. (4.4)
M e “

i—1
namely, {r;} is a representation of braid group. The Markov trace is defined by
=ty trimy - ... Uy (izi>0) (4.5)
for peB’ generated by {r;}. For instance

thp)=tr - trey - UAPUIR ... QAD ... @IRI® ... BRI)} (4.6)
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(3) Let ¥Y={R, h, &, B} be an enchanced Yang-Baxter operator (EYB) and A, be
a subalgebra of End (VR V® ... ®V) generated by the iamge p(B,) then the evB-
operator is termed redundant Yxe A, ‘

tr {X(I®" "@h) ed,_, foralln>1. 4.7
The theorem states that if ¥ is redundant then
Ty =a "8 tr{p(BYI®AQ .. . @R)} (4.8)

is an isotopy invariant of oriented links for be B, and WA(b) is determined by the writhe.
Now we shall point out that the evs operator associated with (2.16) is redundant.
The basic line of proof is the extension of the discussion in [6] but without using any
properties of Bwa
In [6] we have verified that if a braid block A, B, satisfies

An— 1 =-An—2 +An—2rn—2An—2 + An —2.";1 2An— 2 (49)

then the corresponding ¥ must be redundant. Bwa sufficiently satisfies this relation.
Equation (4.9) can be graphically illustrated by

3 n-1 1 p=2 n 1 n-2 n
Bn_1 = 8p-2 + +

Now our task is to prove that r,_, and 7,1, appear only once in #-strings for the
Y associated with (2.16). First we discuss the case with three strings then complete the
proof by induction. Let us follow the standard procedure as presented in [12.6], that
is essentially to find all independent bases.

The braid relations are

b,’b;ﬁ 1b5= bi-_{: 1b1‘bii 1

(4.10)

bb=bb  (i—j22)
and the § given by (2.16) satisfies

§?=(a'- P+ DS+ (P + e’ — oY — oS (4.11)

So the independent basis should be induced in the following listed ones

As={Lr,rs, L R o S P o R T SR S

N TR TR CR S R T ol i SR T S

e, rir{’r,", e, T T and o e, rz_lr,rz_’}. (4.12)

Observing (4.12) the ;' and r, appear only once in the first 21 base so that (4.9) has
already been satisfied because ri ', r;€ B,. The difficulty is in the base is ror7'r; (and its
inverse) which formally does not obey (4.9). In the present case there is no algebraic
relation like Bwa to simplify computation. We have to directly check whether rry 'r,
can be expressed in terms of a linear combination of the other 21 bases.
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A lengthy calculation gives
—rary ry= Xl + Xy 7y Xara + X3t + xgr7 !
+ X5+ X+ Xpr T e Xt H xor 177!
+x10ry Tz yarz s
+par U1 U ysrir 'y yert rary byt
+yegrira 1+ ey gy T (4.13)
where
Xo=—(F—1Y(Fo—-1)—x—x,
0 == (f=a) - )/ {({ - o+ o)}
== -D{E0~1)—xs—Xx;
X =2+ 0%~ oo + FPo + 0)/{(F+ 1)(Po+ 1)}
= - Do+ 1) —y—x
xs=xe=—0 '+~ - 0)/(F—Po+P—w)
xr=x3= (12 + 0’1+ - *C+ 1 — - 1)/A (4.14)
Xo=X=1"—1—y;—x,
y=y=—0(1-a*t— £+ /A
ys=—(yr+xs), ys=—{+ys+x)
ya=—(+ys), ye=y;=—1(Fo+o—1)/A
ys=yo=—1{(w+2}*~ &’} /A
Vo= = 1=y = x;=Xxp
A=—o* 1+ 1(F#-w)
Based on (4.13) we conclude that any braid blocks associated with (2.16) for three

strings satisfy (4.9), namely it is redundant. Now we show the statement works for n
strings.

Lemma. Let A,_, be associated with (2.16), and (4.9) is satisfied. Regarding 4, as
a subalgebra of A4, then

An=An—|+An—lrn—1Arr—l+An—lr;iIAn—l- (415)

The proof is on the basis of induction. For n=2 the set of basis of 4,={I,

r."‘, 1. 72, ! , 12, PPy, i, rzr;'l, rs, r;l Pl rf]r{', r{'r["} the lemma is true.
For n=3 suppose (4.9) holds because r,r;=r;r;(|i—j| 22) we have

Ap= Aot Aot E o Ay 1o ot 1 Ay
+A,,.';!';._;, }',:_lg, !‘,f_ gAn_g (T, T’=:':1, 0) (417)

Since ¥ r*'r*(1, v'==%1, 0) can be transformed into r*+*!+*, equation (4.17) is recast
into (4.15). The lemma is proved.
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Summing up the above discussions we conclude that the eve operator Y associated
with (2.16) is really redundant; even the S does not obey the swa.

To graphically check our statement we list some invariant tangles calculated separ-
ately by

T(h)y=a " ®B ™" tr, . {BIDI® ... ®H)} (4.18)
. with
I—‘, 11 A
i h= o | a=2, B=i7 (4.19)
M @
| T (tz—l)(coéz—l)
el 4.2
r’ '; T = (=1 et ~1) -(420)
{ : tr,,: (F—D(0f—1) 2
I\ : : T(r;r2r1)=(tz—l)(mt2—1) ( )
5|
tr, g0 =~ D)@ 1) 422)

T(ra7'r)=(F— 1w —1)

=

Observing (4.20), (4.21) and (4.22) we really obtain the same results for three invariant
tangles, .
Another example is given by

ey — @+ DN+ EC+2Qo+ D—t(@+ 1) +1

4.23
T(rirar) =t @+ P+ Qe + 1)+ 0’ A+ 1), -

5. Concluding remarks

(1) The exotic family of solutions (3.10) is not a simple super extension of spin
models. It originates from the ‘continuous’ extension of representations of quantum
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algebra with ¢ a root of unity. This extension preserves the quantum double of Drinfeld
[3] and is emphasized by Jimbo [18].

(2) The diagonal matrix # in the Markov trace is explicitly given by direct calcula-
tions for non-coloured case.

{3) The 9 x 9 representation shown by (2.6} does not obey Bwa. It can be Yang-
Baxterized in the unigue assignment of eigenvalues given by (2.16). We have verified
that the EYB operator Y associated with (2.16) is redundant in the sense of Murakami
for r-strings. Hence the related invariant tangles can be constructed explicitly.

(4) The Yang-Baxterization of (3.10) and their redundancy are attractive. The
calculation is in progress. The corresponding state model is also interesting and is
connected with an extension of the discussion of Kauffian and Saleur [9, 10].
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