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Non-Birman-Wenzl algebraic properties and redundancy of 
exotic enhanced Yang-Baxter operator for spin model 

MO-Lin Ge, Guang-Chun Liu, Chang-Pu Sun and Yi-Wen Wang 
Theoretical Physics Section of Nankai Institute of Mathematics, Tianjin, 300071, People’s 
Republic of China 

Received 27 April 1992, in final form I March 1993 

Absfract In this paper we explicitly mnstrucl the Markov trace for the general coloured 
exotic braid group representations (ER) with spind. It is verified that the BGR for j =  I is 
redundant in the sense of Murakami, but no Birman-Wend algebra. 

1. htroduction 

Some of the trigonometric solutions of the Yang-Baxter equation (YBE) can be derived 
through the Yang-Baxterization prescription [l,  21 for given braid group represen- 
tations, which are related to the quantum algebra through either the quantum double 
of Drinfeld [3] or matrix Hopf algebra [4]. The Yang-Baxterkation approach [4,5] is 
based on the number of distinct eigenvalues of a considered BGR denoted by S. The 
physical solutions of YBE should satisfy the boundary condition 

initial condition 

and the nnitarity condition 

where p ( x )  is a scalar function of spectral parameter x, and I is the unity matrix. In 
[4,51 we found that such a Yang-Baxtedzation prescription is related with the untang- 
ling properties of a BGR. An interesting example is the Birman-Wenzl algebra (BWA). 
In [5,6] we pointed out that if a BGR obeys BWA then the Yang-Baxterization prescrip- 
tion works sufficiently [l, 5,6]. It is equivalent to the Baxterization of Jones [I] for the 
standard case. It is also verified that our non-standard solutions associated with B(n), 
C(n) and D(n) all belong to BWA [6]. 

On the other hand, one meets the Alexander link polynomials [S, 131 for some non- 
standard solutions of BGR. In this case invariant  tangles appear instead of the usual 
links. 

Following Murakami [12] if an enchanced Yang-Baxter operator (YBE) Yis redund- 
ant then  invariant^ tangles associated with the corresponding BGR exist. 
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We have proved that any BGR belonging to BWA must he redundant [6]. Further- 
more, in [6, 71 it has been shown that our non-standard solutions of BGR associated 
with E@), C(n) and D(n) obey BWA, and some BGR associated with C(n) and D(n) 
lost the definition of loop in Kauffman state model. Therefore they are redundant in 
the sense of Murakami [I21 and there exist invariant tangles [6]. A question is then 
naturally raised: whether there is a BGR with three distinct eigenvalues, which is not 
BWA but still redundant. 

The answer is yes. In this paper we shall explore the following points. 
(1) The exotic solution for spin 1 presented in [13] is definitely not BWA. 
(2) A general Markov trace theory is set up for our non-standard solutions with 

spin jderived by the representations of quantum algebra with q a root of unity [14,16]. 
The solutions given in [12,13] are special cases of our solutions. 

(3) By direct calculation we prove that the exotic BGR for spin 1 is redundant so 
that the associated invariant tangles are rigorously defined. 

2. Yang-Baxterizatioo and properties of BGR with three distinct eigenvalues 

We fist  review the general scheme of Yang-Baxterkation for a BGR denoted by S with 
three distinct eigenvalues 

(2.3) 

(2.4) 
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with 

B(x)= I+-+-+-  x. ( ;: 2) (2.7) 

As has been shown in [5], if S obeys the BWA then S satisfies 

.ml, L M=O (2.8) 

and 

f ( ~ , n , , w = o .  (2.9) 

One can not derive that S obeys BWA even if S satisfies both (2.8) and (2.9) 
Without loss of generality the eigenvalues of S are taken as A, = A, A2= A-' and &= 

1-' and m=A+y-' then we have: 

Proposition I .  If S satisfies (2.8) then (2.9) is equivalent to 

El SzEi - E A &  = 1 (Et - Ez) 

where 

Si+S; '=m( l+Ei ) ( i= l ,  2). 

Proof. By the definition of Ei, equation(2.1) can be recast into 

E:= {m-'(l+l-')-Z}E, 

or 

Sf = m(Sj+ l-'Ei) - I .  

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

Substituting (2.11)-(2.13) into (2.2) we obtain 

f(nl ,  L, i ) = f ( A ,  a-', I )  

=-I2&(& - E z )  -A21m2(ElS2El -E&Ez) +U2in(S~&S -SzE&) 

+ U2m2(ElS2 + &EI - E2Sl - SIE2). (2.14) 

Using (2.14), a direct check gives 

a-lfca, a-', i)-af(a-I, a, l)=(~-A2-')fmz{E~S~E~-~2slEz-I(~l - E ~ ) } .  (2.15) 

Thusf(hI,&, A3)=0 thenf(Az,Al, A3) vanishes if and only if (2.10) holds. 
Since (2.10) cannot determine EIS2El=lEl which is the point for the existence of 

BWA, we conclude that both (2.8) and (2.9) are not enough to determine BWA. However 
if (2.8) holds but (2.10) does~not, this immediately determines that S must not be BWA. 

proposition 2. The following BGR is not BWA: 

S=block diag ( A , ,  A z ,  A , ,  A d ,  A S )  (2.16) 
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where 

a 2 = r  I 1-3 ' 1  Ad=[ CO213 O tz(1-mP) OZf3  1 
As= 0 of2 imtZ 

t2 imtz ( 1 - t 2 ) ( 1 - m t 2 )  I 
with m3=1 and Z=((l-tZ)(l-otZ))l. 

The distinct eigenvalues are 

a, = 1, &=+* a 3 = d  (2.17) 

To prove proposition 2 we substitute (2.16) and (2.17) intof(&, AI, ,I3). The calcula- 

{ f ( & . ~ l , a 3 ) ~ ~ = ( ~ ~ 8 + ~ 2 P + ~ ) t - 9  (2.18) 

vanishes only when f =  1 
Thus by proposition 1 the %given by (2.16) does not obey BWA. Therefore, s c a n  

be Yang-Baxterized by (2.6) though % does not obey BWA This example is interesting 
because the BGR given by (2.16) is not BWA, but the Yang-Baxterization prescription 
still works. This solution differs from the super-extended BGR associated with B(n), 
C(n) and (D(n)  that obey BWA. As was shown in 1141 the super-case corresponds to 
genetic q-representation of quantum algebra, whereas (2.16) comes from quantum alge- 
bra at g, a root of unity, and its U(1) extension is permitted by the quantum double. 

tion shows thatf(&, A,,  A,) #O. For instance the element 

3. Markov properties of exotic BGR for spin model 

In general it is difficult to perform the parameter extension in preserving the quantum 
double since the explicit representation should be used. However, for SL,(2) one can 
use the q-deformed Holstein-Pnmakoff transformation to make such an extension. 
Obviously the extension means more parameters appearing in the associated BGR, hence 
we shall obtain new solutions of the BGR. 

In our previous work [14, 161 the q-boson realizations of SLq(2) with more param- 
eters were established. For SL,(2) g-algebra 

[ j+ , 7-1 =[?,I (3.1) 

[jo, j*] = *2j* (3.2) 

j + 4 +  = a+a(* (3.3) 

J--tJ-=a-B(N) (3.4) 

jo -+ Jo = 2k-  a (3.5) 

where In]= (q"-q-")/(q-q-'), a mapping can be defined through 
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where 

(3.6) 

(3.7) 

and 

On the Fock space we then have 

(3.9) 

Carrying out the quantum double theory on SLq(2) at q, a root of unity, and using the 
standard formula of Drinfeld we derive the following espression for the coloured 
R-matrix. 

(~'"''I'(fl)):~:$ = q20a +mi- ( ~ / 2 ) ) t i 2 + 4 - # / 2 ) )  

n 

(3.10) 

x fl a j , . , " , + / - t ( a ) ~ j ~ , " ~ - ~ + , ( p ) [ j 2 + ~ 2 - ~ +  11G+dn& 
1-0 

( a p = 2 j + l ,  qP= 1) 

Obviously if it satisfies the quantum double even more parameters appear in (3.10). 
The details of the derivation of (3.10) can be found in [14.16]. Here we would like 

to emphasize that (3.10) is the consequence of 'mixture' between quantum algebra with 
4, a root of unity, and continuous parameter t as well as other colour parameters. 

Having the general coloured solutions (3.10) we shall discuss the Markov trace 
properties. For simplicity we only deal with the case j l  =j2.  Since only A = p  plays the 
role for coloured links /12], the R-matrix is simplified to 

~ y n i m + =  ~ { Z t i + n @ - L ) {  2V+mi)-A) 
m,mi q- 

(3.11) 

where 
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The Markov trace is sufficiently defined in terms of a diagonal matrix h such that 
~ 7 1  

C RE% independent of m (3.12) 
N 

where 

h,,,. =h,,,S,. (no summation) 

The diagonal elements of (3.11) read 
ty""" ; { 20+mr) -A) (  2u+ ?",) - a.) 

,n,m2- 4 

(3.13) 

Taking aj.,m-l(k)Z)pj.m(lZ)=[k-j-m+l] into account andmultiplyingacommon factor 
q '' the diagonal elements a n  be devided into two types 

(3.15) 

- 7  * 

,","_ & (  20.+m)-A)'-LaZ a+R,,.-q- 

The equation (3.12) is equivalent ot he following 2j equations 
RDh.=Rj-iJ-'h.- +Rj - ' jh  - - 

JJ , j - l j - I ,  I , - I j  j -  ... - .  .. 
n 

=R$y;hj - .+  R$Ii;::z:hj-n+i= . . . 

= R  :$:$h-j+ C R :$jh-j+, .  

i- I 

:/ 

i - I  

Without loss of generality we take hj= 1 then (3.17) reads 

aj= a,- lhj- + bl- 1. jhj= . . . = . . . 

Since 

q p =  1 p = 4 j + 2  (a=; )  

(3.17) 

(3.18) 

(3.19) 
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we find 

hi- I = q*= q-2, (3.20) 

In the following we shall prove that for the highest weightj and any other weight 
i, then h is given by (3.18). With the help of induction 

h. ,-' .= 9 -2i (3.21) 

we put the continuous parameter t=q-A and B"."- - bj-i,xhj-i+k and substitute into 
i 

aj=aj-h,-i+ bj-i,@j-i+k (3.22) 
k =  I 

to obtain 

"-1 n 

(l+q%)= c {:}9qi"-")i 
i=o i = 0  

where 

the term 

(3.24) 

(3.25) 

(3.26) 

can be expmded in terms of 1'. The term with highest power is q-2'(l+'>P. The lowest 
term is constant 

k=I  

because of (3.25). The coefficients of t2" (1 <m<i -  I )  vanish because 
I 

( _ ~ ) k $ ( l - O + m k  { k  n ] q { k ] q = O  

k-m 

which can be verified by making the index translation 

=O. I J i - 0 7  

k=O k - 0  [i- kl ! [k - m]! 

Through calculation this can be recast to 

[i]! [k]! 
( - i ) k $ ( l - i + m )  - = O .  

k=O [k]! [i-k]! [k-m]![m]!  

(3.27) 

(3.28) 

(3.29) 

(3.30) 

Equation (3.30) means that the coefficients of t2 (1 < m < i -  1) vanish. 
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Substituting the above results into equation (3.22) 
I 

aj=aj-;hj-;+ 
k- 1 

(3.31) 

we confirm the validity of (3.21). Summing up all the calculations we conclude that the 
diagonal matrix h which is called the Markov trace [I71 is ( D = &  

(3.32) h = diag( 1, a-', 0-', . . . , D - ( N  - 1 )  ) for aN= 1. 

Obviously 

tr(h) = 0 (3.33) 

in particular for j =  1 the parameter a, in (2.16) plays the role of q in (3.32) we thus 
have 

.-[' a,' j (3.34) 

For general soutions (3.11) we shall construct the Alexander link polynomials. To 
confirm the existence of such' invariant tangles we should prove that the considered 
BGR is redundant in the sense of Murakami 1121. 

4. Reduncancy of equation (2.16) 

The redundance of general solutions (3.11) are very complicated. In this paper we shall 
focus on the redundant property of (2.16) which is a special case of (3.1 1). For brevity 
we shall apply the theorum of Murakami literally as the following. 

(1) Direct calculation gives that 

tr2(R . ( I B ~ ) )  = a61 
tr2(R-' .   ah)) = a-'Pt 

(4.1) 

(4.2) 
where trZ means that the trace is taken on the second space. The f? is given by (2.16) 
and 

P = r2. ' 'I ,~ , (44.3) 2 a = f  

(2) Defining 

r I= l@l@ . . . @ I  @RBI@ . . ~ @ I .  (4.4) 
L__ ..' 

i -  I 

namely, {r;} is a representation of braid group. The Markov trace is defined by 

t r i j= tr i .  tr+, . . . . . trj (i2jiZO) (4.5) 

(4.6) 

for p s B  generated by {r , } .  For instance 

tr;,(p) = tr; . tr(-;. . . . . trj{p(I@ . . . Oh@ . . . @h@I@ . . . @l)}  
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( 3 )  Let Y= {a, h, a,  p )  be an enchanced Yang-Baxter operator (EYB) and A. be 
a subalgebra of End ( VQ VQ . . . @ V )  generated by the iamge p(B.) then the EYB- 
operator is termed redundant VxsA, 

tr ,{x(P'"-l '@h))~~.-I  f o r d l n > l .  (4.7) 
The theorem states that if Y is redundant then 

T(b)=a-W(b)p-n trn,2{p(b)(IQh@ . . . @h)} (4.8) 
is an isotopy invariant of oriented links for bsB. and W(b) is determined by the writhe. 

Now we shall point out that the EYB operator associated with (2.16) is redundant. 
The basic line of proof is the extension of the discussion in [6] but without using any 
properties of BWA 

In [6] we have verified that if a braid block A.&, satisfies 

(4.9) 

then the corresponding Y mnst be redundant. BWA sufficiently satisfies this relation. 
Equation (4.9) can be graphically illustrated by 

n-2 n-1 1 n-2 n-1 1 n-2 n-1 

-I A,- I = An-2 +An-2rn-2An-2+ An-2r-2An-2 

fl=m+R+R Bn-2 Bn-2 

Bn-1 47-2 
Bn-2 Bn-2 ... ... ... ... 

Now our task is to prove that r.- I and r;: I appear only once in n-strings for the 
Y associated with (2.16). First we discuss the case with three strings then complete the 
proof by induction. Let us follow the standard procedure as presented in f12.61, that 
is esseniially to find all independent bases. 

The braid relations are 

bib,+ lb;=bi*ibibii 1 

b,bj= bibi (Ii-Jlb2) 
and the S given by (2.16) satisfies 

S2= (at4-?+ I)S+ (r2+ mr6- cor4) - m t 6 P .  

So the independent basis should be induced in the following listed ones 
A 3 = { I ,  r l ,  r2 ,  r:', r2 -I , TIT2, r2r1, r;lr2, r2rr1, r1r;', r;2rr1 

ry1r1,  rI -I r2 -1 , rlr2r1, r;'r;'r;', r;' r2r l ,  r1r;lrl 

- I  -I -1  -I r1r2r:', r'1r2 rI , rI  rl r I ,  r;Ir2 r;' and r2r;'r2, r;lr1r;'). 

(4.10) 

(4.11) 

(4.12) 

Observing (4.12) the r;' and r, appear only once in the first 21 base so that (4.9) has 
already been satisfied because r:' , rI C B I .  The difficulty is in the base is r2rF1r2 (and its 
inverse) which formally does not obey (4.9). In the present case there is no algebraic 
relation like BWA to simplify computation. We have to directly check whether r2r;'rZ 
can be expressed in terms of a linear combination of the other 21 bases. 



(4.13) 

(4.14) 

Based on (4.13) we conclude that any braid blocks associated with (2.16) for three 
strings satisfy (4.9), namely it is redundant. Now we show the statement works for n 
strings. 

Lentma. Let A, - l  be associated with (2.16), and (4.9) is satisfied. Regarding A n - l  as 
a subalgebra of A, then 

(4.15) 

The proof is on the basis of induction. For n = 2  the set of basis of A 2 = { I ,  

For n=3 suppose (4.9) holds because r,rj=rjrj(l i- j l  22) we have 

A.=A,-' + Am-lrn- lAn-  I + A n - l r ~ ~ I A n - - l .  

~ ~ 1 , r l , r 2 , r ~ ' , r l r 2 , ~ 2 r - I , r ~ 1 r 2 , r 2 ~ ~ 1 , r l r ~ ' , ~ ~ 1 , r l , r ~ 1 ~ ~ 1 , r ~ ' ~ ~ 1 ~  thelemmais true. 

A.=A,-2+A,-~r:'  +An- lrn-  r, I ~ ~ - z ~ ~ - I A ~ - I  

( T ,  T ' = f l ,  0). (4.17) ' -I r + A ~ - l r ~ - ] , r " - ~ , ~ ~ - , ~ " - l  

Since rfr*'rr(z,  z'=*l,O) can be transformed into r7?'rr', equation (4.17) is recast 
into (4.15). The lemma is proved. 
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Summing up the above discussions we conclude that the EYE operator Y associated 

To graphically check our statement we list some invariant tangles calculated separ- 

(4.18) 

with (2.16) is really redundant; even the S does not obey the BWA. 

ately by 

T(b) =~-"~ 'p-"  tr,,,2{b(I@h@ . . . ~ @ h ) }  

with 

tr,,a: (1'- 1 ) ( o t 2 -  1 )  

r (r:)= ( t 2 -  l)(ot2- 1) 
(4.20) 

(4.21) 

(4.22) 

Observing (4.20), (4.21) and (4.22) we really obtain the same results for three invariant 
tangles. 

Another example is given by 

trn.>: -t8(o + 1 ) + t ~ + t ~ ( 2 ~ +  t)-t2(a+ I ) +  I 

T(r:rzrl) = t-*{ wzt8+ t6+ t4(20 + I )  + wZtZ+ I } .  
(4.23) 

5. Concluding remarks 

( I )  The exotic family of solutions (3.10) is not a simple super extension of spin 
models. It originates from the 'continuous' extension of representations of quantum 



404 M-L Ge et a1 

algebra with q a root of unity. This extension preserves the quantum double of Drinfeld 
[3] and is emphasized by Jimbo [IS]. 

(2) The diagonal matrix h in the Markov trace is explicitly given by direct calcula- 
tions for non-coloured case. 

(3) The 9 x 9 representation shown by (2.6) does not obey BWA. It can be Yang- 
Baxterized in the unique assignment of eigenvalues given by (2.16). We have verified 
that the EYB operator Y associated with (2.16) is redundant in the sense of Murakami 
for n-strings. Hence the related invariant tangles can be constructed explicitly. 

(4) The Yang-Baxterization of (3.10) and their redundancy are attractive. The 
calculation is in progress. The corresponding state model is also interesting and is 
connected with an extension of the discussion of Kauffman and Saleur 19, IO]. 
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